3.2.54 \(\int \frac {\coth (c+d x)}{(a+b \text {sech}^2(c+d x))^2} \, dx\) [154]

Optimal. Leaf size=83 \[ \frac {b^2}{2 a^2 (a+b) d \left (b+a \cosh ^2(c+d x)\right )}+\frac {b (2 a+b) \log \left (b+a \cosh ^2(c+d x)\right )}{2 a^2 (a+b)^2 d}+\frac {\log (\sinh (c+d x))}{(a+b)^2 d} \]

[Out]

1/2*b^2/a^2/(a+b)/d/(b+a*cosh(d*x+c)^2)+1/2*b*(2*a+b)*ln(b+a*cosh(d*x+c)^2)/a^2/(a+b)^2/d+ln(sinh(d*x+c))/(a+b
)^2/d

________________________________________________________________________________________

Rubi [A]
time = 0.09, antiderivative size = 83, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {4223, 457, 90} \begin {gather*} \frac {b^2}{2 a^2 d (a+b) \left (a \cosh ^2(c+d x)+b\right )}+\frac {b (2 a+b) \log \left (a \cosh ^2(c+d x)+b\right )}{2 a^2 d (a+b)^2}+\frac {\log (\sinh (c+d x))}{d (a+b)^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Coth[c + d*x]/(a + b*Sech[c + d*x]^2)^2,x]

[Out]

b^2/(2*a^2*(a + b)*d*(b + a*Cosh[c + d*x]^2)) + (b*(2*a + b)*Log[b + a*Cosh[c + d*x]^2])/(2*a^2*(a + b)^2*d) +
 Log[Sinh[c + d*x]]/((a + b)^2*d)

Rule 90

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandI
ntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] &&
(IntegerQ[p] || (GtQ[m, 0] && GeQ[n, -1]))

Rule 457

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 4223

Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> Module[{ff =
 FreeFactors[Cos[e + f*x], x]}, Dist[-(f*ff^(m + n*p - 1))^(-1), Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*((b + a*
(ff*x)^n)^p/x^(m + n*p)), x], x, Cos[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, n}, x] && IntegerQ[(m - 1)/2] &&
IntegerQ[n] && IntegerQ[p]

Rubi steps

\begin {align*} \int \frac {\coth (c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx &=-\frac {\text {Subst}\left (\int \frac {x^5}{\left (1-x^2\right ) \left (b+a x^2\right )^2} \, dx,x,\cosh (c+d x)\right )}{d}\\ &=-\frac {\text {Subst}\left (\int \frac {x^2}{(1-x) (b+a x)^2} \, dx,x,\cosh ^2(c+d x)\right )}{2 d}\\ &=-\frac {\text {Subst}\left (\int \left (-\frac {1}{(a+b)^2 (-1+x)}+\frac {b^2}{a (a+b) (b+a x)^2}-\frac {b (2 a+b)}{a (a+b)^2 (b+a x)}\right ) \, dx,x,\cosh ^2(c+d x)\right )}{2 d}\\ &=\frac {b^2}{2 a^2 (a+b) d \left (b+a \cosh ^2(c+d x)\right )}+\frac {b (2 a+b) \log \left (b+a \cosh ^2(c+d x)\right )}{2 a^2 (a+b)^2 d}+\frac {\log (\sinh (c+d x))}{(a+b)^2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.21, size = 115, normalized size = 1.39 \begin {gather*} \frac {(a+b) \left (2 a^2 \log (\sinh (c+d x))+b \left (b+(2 a+b) \log \left (a+b+a \sinh ^2(c+d x)\right )\right )\right )+a \left (2 a^2 \log (\sinh (c+d x))+b (2 a+b) \log \left (a+b+a \sinh ^2(c+d x)\right )\right ) \sinh ^2(c+d x)}{a^2 (a+b)^2 d (a+2 b+a \cosh (2 (c+d x)))} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Coth[c + d*x]/(a + b*Sech[c + d*x]^2)^2,x]

[Out]

((a + b)*(2*a^2*Log[Sinh[c + d*x]] + b*(b + (2*a + b)*Log[a + b + a*Sinh[c + d*x]^2])) + a*(2*a^2*Log[Sinh[c +
 d*x]] + b*(2*a + b)*Log[a + b + a*Sinh[c + d*x]^2])*Sinh[c + d*x]^2)/(a^2*(a + b)^2*d*(a + 2*b + a*Cosh[2*(c
+ d*x)]))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(205\) vs. \(2(79)=158\).
time = 2.68, size = 206, normalized size = 2.48

method result size
derivativedivides \(\frac {\frac {b \left (-\frac {2 a b \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a \left (\tanh ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+b \left (\tanh ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+2 a \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-2 b \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a +b}+\frac {\left (2 a +b \right ) \ln \left (a \left (\tanh ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+b \left (\tanh ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+2 a \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-2 b \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a +b \right )}{2}\right )}{a^{2} \left (a +b \right )^{2}}+\frac {\ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{\left (a +b \right )^{2}}-\frac {\ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{a^{2}}-\frac {\ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{a^{2}}}{d}\) \(206\)
default \(\frac {\frac {b \left (-\frac {2 a b \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a \left (\tanh ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+b \left (\tanh ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+2 a \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-2 b \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a +b}+\frac {\left (2 a +b \right ) \ln \left (a \left (\tanh ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+b \left (\tanh ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+2 a \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-2 b \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a +b \right )}{2}\right )}{a^{2} \left (a +b \right )^{2}}+\frac {\ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{\left (a +b \right )^{2}}-\frac {\ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{a^{2}}-\frac {\ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{a^{2}}}{d}\) \(206\)
risch \(\frac {x}{a^{2}}-\frac {2 x}{a^{2}+2 a b +b^{2}}-\frac {2 c}{d \left (a^{2}+2 a b +b^{2}\right )}-\frac {4 b x}{a \left (a^{2}+2 a b +b^{2}\right )}-\frac {4 b c}{a d \left (a^{2}+2 a b +b^{2}\right )}-\frac {2 b^{2} x}{a^{2} \left (a^{2}+2 a b +b^{2}\right )}-\frac {2 b^{2} c}{a^{2} d \left (a^{2}+2 a b +b^{2}\right )}+\frac {2 b^{2} {\mathrm e}^{2 d x +2 c}}{a^{2} d \left (a +b \right ) \left (a \,{\mathrm e}^{4 d x +4 c}+2 a \,{\mathrm e}^{2 d x +2 c}+4 b \,{\mathrm e}^{2 d x +2 c}+a \right )}+\frac {\ln \left ({\mathrm e}^{2 d x +2 c}-1\right )}{d \left (a^{2}+2 a b +b^{2}\right )}+\frac {b \ln \left ({\mathrm e}^{4 d x +4 c}+\frac {2 \left (2 b +a \right ) {\mathrm e}^{2 d x +2 c}}{a}+1\right )}{a d \left (a^{2}+2 a b +b^{2}\right )}+\frac {b^{2} \ln \left ({\mathrm e}^{4 d x +4 c}+\frac {2 \left (2 b +a \right ) {\mathrm e}^{2 d x +2 c}}{a}+1\right )}{2 a^{2} d \left (a^{2}+2 a b +b^{2}\right )}\) \(332\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(coth(d*x+c)/(a+b*sech(d*x+c)^2)^2,x,method=_RETURNVERBOSE)

[Out]

1/d*(b/a^2/(a+b)^2*(-2*a*b*tanh(1/2*d*x+1/2*c)^2/(a*tanh(1/2*d*x+1/2*c)^4+b*tanh(1/2*d*x+1/2*c)^4+2*a*tanh(1/2
*d*x+1/2*c)^2-2*b*tanh(1/2*d*x+1/2*c)^2+a+b)+1/2*(2*a+b)*ln(a*tanh(1/2*d*x+1/2*c)^4+b*tanh(1/2*d*x+1/2*c)^4+2*
a*tanh(1/2*d*x+1/2*c)^2-2*b*tanh(1/2*d*x+1/2*c)^2+a+b))+1/(a+b)^2*ln(tanh(1/2*d*x+1/2*c))-1/a^2*ln(tanh(1/2*d*
x+1/2*c)+1)-1/a^2*ln(tanh(1/2*d*x+1/2*c)-1))

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 209 vs. \(2 (79) = 158\).
time = 0.28, size = 209, normalized size = 2.52 \begin {gather*} \frac {2 \, b^{2} e^{\left (-2 \, d x - 2 \, c\right )}}{{\left (a^{4} + a^{3} b + 2 \, {\left (a^{4} + 3 \, a^{3} b + 2 \, a^{2} b^{2}\right )} e^{\left (-2 \, d x - 2 \, c\right )} + {\left (a^{4} + a^{3} b\right )} e^{\left (-4 \, d x - 4 \, c\right )}\right )} d} + \frac {{\left (2 \, a b + b^{2}\right )} \log \left (2 \, {\left (a + 2 \, b\right )} e^{\left (-2 \, d x - 2 \, c\right )} + a e^{\left (-4 \, d x - 4 \, c\right )} + a\right )}{2 \, {\left (a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right )} d} + \frac {\log \left (e^{\left (-d x - c\right )} + 1\right )}{{\left (a^{2} + 2 \, a b + b^{2}\right )} d} + \frac {\log \left (e^{\left (-d x - c\right )} - 1\right )}{{\left (a^{2} + 2 \, a b + b^{2}\right )} d} + \frac {d x + c}{a^{2} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(d*x+c)/(a+b*sech(d*x+c)^2)^2,x, algorithm="maxima")

[Out]

2*b^2*e^(-2*d*x - 2*c)/((a^4 + a^3*b + 2*(a^4 + 3*a^3*b + 2*a^2*b^2)*e^(-2*d*x - 2*c) + (a^4 + a^3*b)*e^(-4*d*
x - 4*c))*d) + 1/2*(2*a*b + b^2)*log(2*(a + 2*b)*e^(-2*d*x - 2*c) + a*e^(-4*d*x - 4*c) + a)/((a^4 + 2*a^3*b +
a^2*b^2)*d) + log(e^(-d*x - c) + 1)/((a^2 + 2*a*b + b^2)*d) + log(e^(-d*x - c) - 1)/((a^2 + 2*a*b + b^2)*d) +
(d*x + c)/(a^2*d)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 1031 vs. \(2 (79) = 158\).
time = 0.48, size = 1031, normalized size = 12.42 \begin {gather*} -\frac {2 \, {\left (a^{3} + 2 \, a^{2} b + a b^{2}\right )} d x \cosh \left (d x + c\right )^{4} + 8 \, {\left (a^{3} + 2 \, a^{2} b + a b^{2}\right )} d x \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{3} + 2 \, {\left (a^{3} + 2 \, a^{2} b + a b^{2}\right )} d x \sinh \left (d x + c\right )^{4} + 2 \, {\left (a^{3} + 2 \, a^{2} b + a b^{2}\right )} d x - 4 \, {\left (a b^{2} + b^{3} - {\left (a^{3} + 4 \, a^{2} b + 5 \, a b^{2} + 2 \, b^{3}\right )} d x\right )} \cosh \left (d x + c\right )^{2} + 4 \, {\left (3 \, {\left (a^{3} + 2 \, a^{2} b + a b^{2}\right )} d x \cosh \left (d x + c\right )^{2} - a b^{2} - b^{3} + {\left (a^{3} + 4 \, a^{2} b + 5 \, a b^{2} + 2 \, b^{3}\right )} d x\right )} \sinh \left (d x + c\right )^{2} - {\left ({\left (2 \, a^{2} b + a b^{2}\right )} \cosh \left (d x + c\right )^{4} + 4 \, {\left (2 \, a^{2} b + a b^{2}\right )} \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{3} + {\left (2 \, a^{2} b + a b^{2}\right )} \sinh \left (d x + c\right )^{4} + 2 \, a^{2} b + a b^{2} + 2 \, {\left (2 \, a^{2} b + 5 \, a b^{2} + 2 \, b^{3}\right )} \cosh \left (d x + c\right )^{2} + 2 \, {\left (2 \, a^{2} b + 5 \, a b^{2} + 2 \, b^{3} + 3 \, {\left (2 \, a^{2} b + a b^{2}\right )} \cosh \left (d x + c\right )^{2}\right )} \sinh \left (d x + c\right )^{2} + 4 \, {\left ({\left (2 \, a^{2} b + a b^{2}\right )} \cosh \left (d x + c\right )^{3} + {\left (2 \, a^{2} b + 5 \, a b^{2} + 2 \, b^{3}\right )} \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right )\right )} \log \left (\frac {2 \, {\left (a \cosh \left (d x + c\right )^{2} + a \sinh \left (d x + c\right )^{2} + a + 2 \, b\right )}}{\cosh \left (d x + c\right )^{2} - 2 \, \cosh \left (d x + c\right ) \sinh \left (d x + c\right ) + \sinh \left (d x + c\right )^{2}}\right ) - 2 \, {\left (a^{3} \cosh \left (d x + c\right )^{4} + 4 \, a^{3} \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{3} + a^{3} \sinh \left (d x + c\right )^{4} + a^{3} + 2 \, {\left (a^{3} + 2 \, a^{2} b\right )} \cosh \left (d x + c\right )^{2} + 2 \, {\left (3 \, a^{3} \cosh \left (d x + c\right )^{2} + a^{3} + 2 \, a^{2} b\right )} \sinh \left (d x + c\right )^{2} + 4 \, {\left (a^{3} \cosh \left (d x + c\right )^{3} + {\left (a^{3} + 2 \, a^{2} b\right )} \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right )\right )} \log \left (\frac {2 \, \sinh \left (d x + c\right )}{\cosh \left (d x + c\right ) - \sinh \left (d x + c\right )}\right ) + 8 \, {\left ({\left (a^{3} + 2 \, a^{2} b + a b^{2}\right )} d x \cosh \left (d x + c\right )^{3} - {\left (a b^{2} + b^{3} - {\left (a^{3} + 4 \, a^{2} b + 5 \, a b^{2} + 2 \, b^{3}\right )} d x\right )} \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right )}{2 \, {\left ({\left (a^{5} + 2 \, a^{4} b + a^{3} b^{2}\right )} d \cosh \left (d x + c\right )^{4} + 4 \, {\left (a^{5} + 2 \, a^{4} b + a^{3} b^{2}\right )} d \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{3} + {\left (a^{5} + 2 \, a^{4} b + a^{3} b^{2}\right )} d \sinh \left (d x + c\right )^{4} + 2 \, {\left (a^{5} + 4 \, a^{4} b + 5 \, a^{3} b^{2} + 2 \, a^{2} b^{3}\right )} d \cosh \left (d x + c\right )^{2} + 2 \, {\left (3 \, {\left (a^{5} + 2 \, a^{4} b + a^{3} b^{2}\right )} d \cosh \left (d x + c\right )^{2} + {\left (a^{5} + 4 \, a^{4} b + 5 \, a^{3} b^{2} + 2 \, a^{2} b^{3}\right )} d\right )} \sinh \left (d x + c\right )^{2} + {\left (a^{5} + 2 \, a^{4} b + a^{3} b^{2}\right )} d + 4 \, {\left ({\left (a^{5} + 2 \, a^{4} b + a^{3} b^{2}\right )} d \cosh \left (d x + c\right )^{3} + {\left (a^{5} + 4 \, a^{4} b + 5 \, a^{3} b^{2} + 2 \, a^{2} b^{3}\right )} d \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right )\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(d*x+c)/(a+b*sech(d*x+c)^2)^2,x, algorithm="fricas")

[Out]

-1/2*(2*(a^3 + 2*a^2*b + a*b^2)*d*x*cosh(d*x + c)^4 + 8*(a^3 + 2*a^2*b + a*b^2)*d*x*cosh(d*x + c)*sinh(d*x + c
)^3 + 2*(a^3 + 2*a^2*b + a*b^2)*d*x*sinh(d*x + c)^4 + 2*(a^3 + 2*a^2*b + a*b^2)*d*x - 4*(a*b^2 + b^3 - (a^3 +
4*a^2*b + 5*a*b^2 + 2*b^3)*d*x)*cosh(d*x + c)^2 + 4*(3*(a^3 + 2*a^2*b + a*b^2)*d*x*cosh(d*x + c)^2 - a*b^2 - b
^3 + (a^3 + 4*a^2*b + 5*a*b^2 + 2*b^3)*d*x)*sinh(d*x + c)^2 - ((2*a^2*b + a*b^2)*cosh(d*x + c)^4 + 4*(2*a^2*b
+ a*b^2)*cosh(d*x + c)*sinh(d*x + c)^3 + (2*a^2*b + a*b^2)*sinh(d*x + c)^4 + 2*a^2*b + a*b^2 + 2*(2*a^2*b + 5*
a*b^2 + 2*b^3)*cosh(d*x + c)^2 + 2*(2*a^2*b + 5*a*b^2 + 2*b^3 + 3*(2*a^2*b + a*b^2)*cosh(d*x + c)^2)*sinh(d*x
+ c)^2 + 4*((2*a^2*b + a*b^2)*cosh(d*x + c)^3 + (2*a^2*b + 5*a*b^2 + 2*b^3)*cosh(d*x + c))*sinh(d*x + c))*log(
2*(a*cosh(d*x + c)^2 + a*sinh(d*x + c)^2 + a + 2*b)/(cosh(d*x + c)^2 - 2*cosh(d*x + c)*sinh(d*x + c) + sinh(d*
x + c)^2)) - 2*(a^3*cosh(d*x + c)^4 + 4*a^3*cosh(d*x + c)*sinh(d*x + c)^3 + a^3*sinh(d*x + c)^4 + a^3 + 2*(a^3
 + 2*a^2*b)*cosh(d*x + c)^2 + 2*(3*a^3*cosh(d*x + c)^2 + a^3 + 2*a^2*b)*sinh(d*x + c)^2 + 4*(a^3*cosh(d*x + c)
^3 + (a^3 + 2*a^2*b)*cosh(d*x + c))*sinh(d*x + c))*log(2*sinh(d*x + c)/(cosh(d*x + c) - sinh(d*x + c))) + 8*((
a^3 + 2*a^2*b + a*b^2)*d*x*cosh(d*x + c)^3 - (a*b^2 + b^3 - (a^3 + 4*a^2*b + 5*a*b^2 + 2*b^3)*d*x)*cosh(d*x +
c))*sinh(d*x + c))/((a^5 + 2*a^4*b + a^3*b^2)*d*cosh(d*x + c)^4 + 4*(a^5 + 2*a^4*b + a^3*b^2)*d*cosh(d*x + c)*
sinh(d*x + c)^3 + (a^5 + 2*a^4*b + a^3*b^2)*d*sinh(d*x + c)^4 + 2*(a^5 + 4*a^4*b + 5*a^3*b^2 + 2*a^2*b^3)*d*co
sh(d*x + c)^2 + 2*(3*(a^5 + 2*a^4*b + a^3*b^2)*d*cosh(d*x + c)^2 + (a^5 + 4*a^4*b + 5*a^3*b^2 + 2*a^2*b^3)*d)*
sinh(d*x + c)^2 + (a^5 + 2*a^4*b + a^3*b^2)*d + 4*((a^5 + 2*a^4*b + a^3*b^2)*d*cosh(d*x + c)^3 + (a^5 + 4*a^4*
b + 5*a^3*b^2 + 2*a^2*b^3)*d*cosh(d*x + c))*sinh(d*x + c))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\coth {\left (c + d x \right )}}{\left (a + b \operatorname {sech}^{2}{\left (c + d x \right )}\right )^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(d*x+c)/(a+b*sech(d*x+c)**2)**2,x)

[Out]

Integral(coth(c + d*x)/(a + b*sech(c + d*x)**2)**2, x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(d*x+c)/(a+b*sech(d*x+c)^2)^2,x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Warning, need to choose a branch for the root of a polynomial with parameters. This might be wrong.The choi
ce was done

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\mathrm {cosh}\left (c+d\,x\right )}^4\,\mathrm {coth}\left (c+d\,x\right )}{{\left (a\,{\mathrm {cosh}\left (c+d\,x\right )}^2+b\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(coth(c + d*x)/(a + b/cosh(c + d*x)^2)^2,x)

[Out]

int((cosh(c + d*x)^4*coth(c + d*x))/(b + a*cosh(c + d*x)^2)^2, x)

________________________________________________________________________________________